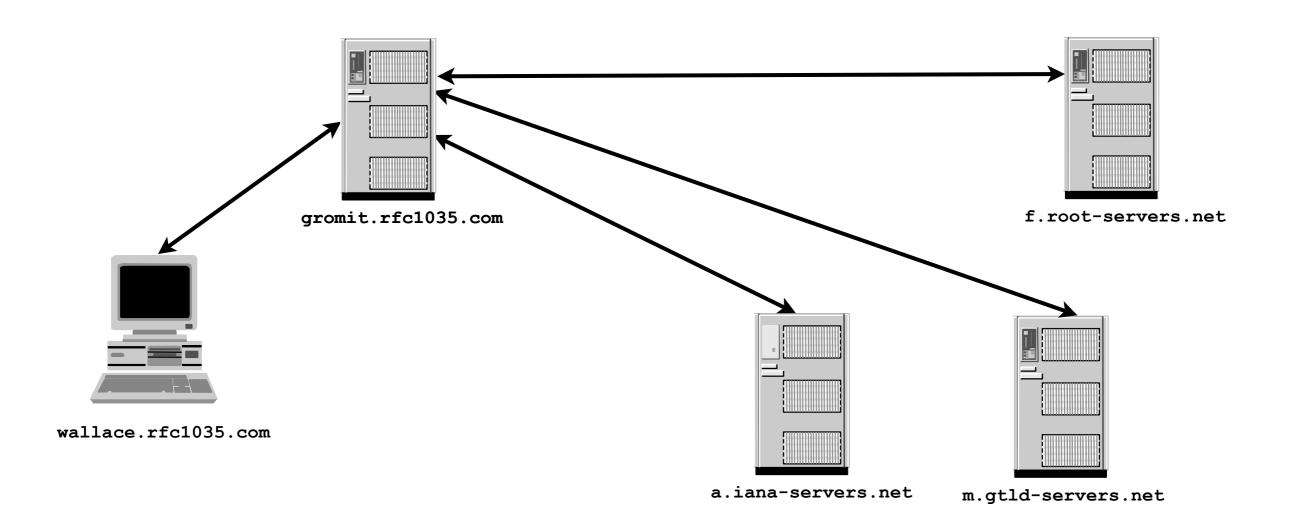
Impact of DNS Protocol Developments on Enterprise Networks

Jim Reid RTFM IIp jim@rfc1035.com #include <std_disclaimer.h>

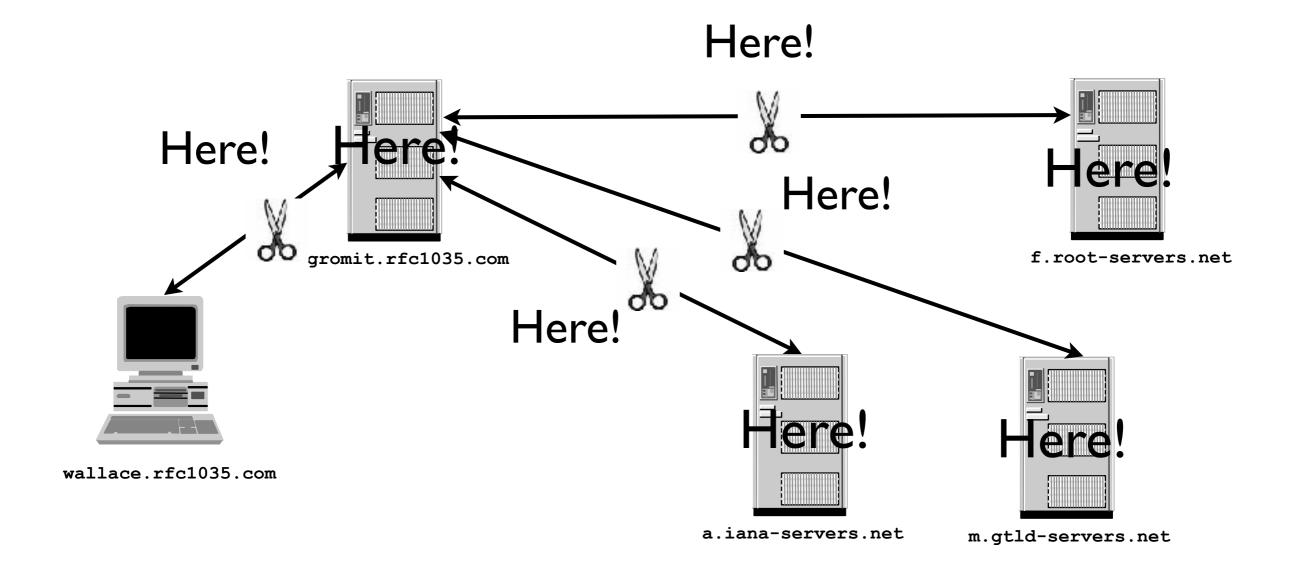
The IETF


- Internet Engineering Task Force
 - No legal identity (by design)
- Develops almost all Internet protocol standards:
 - Routing, addressing, naming, etc.
- Self-organising into Working Groups
 - No membership criteria or voting
 - Decisions made by consensus on mailing lists
 - "rough consensus and running code"
 - WGs define a problem, find a solution and then disband

DNS at the IETF

- Several DNS-related working groups:
 - DNSOP DNS operations
 - DPRIVE DNS Privacy (DNS over (D)TLS)
 - DOH DNS over HTTP(S)
- Now closed WGs:
 - DNSEXT DNS Extensions (Secure DNS)
 - DANE DNS-Based Authentication of Named Entities

A Typical DNS Lookup


Resolving server gromit returns www.example.com's address to the client wallace's stub resolver, which has been patiently waiting for an answer to the DNS query it made

What's Wrong With That?

- Nothing: it all works just fine.....
- BUT there's no authentication at all!
- A client can't tell:
 - Where an answer really came from
 - If the server that replied is telling the truth or not
 - If it received **exactly** what the server sent
 - This applies to wallace.rfc1035.com's query and the lookups gromit.rfc1035.com performed to resolve that query

So where are the vulnerabilities?

DNS Attack Vectors

- Bombard client or resolving server with forged answers or educated guesses
- Intercept a response packet and modify it
 - Tends to only work well if adjacent to client or server
- Inject bogus data into caches
- Take control of the name server(s) for some zone and make them tell lies
- Compromise the registry
- Evil routing/peering tricks to hi-jack traffic

The Solution: DNSSEC

- Weaknesses have been known for a long time
- IETF started work on DNS Security in late 1990s
 - DNS Security Extensions (DNSSEC)
- Design goals:
 - Authenticity and verification of DNS data
- Design exclusions:
 - Message authenticity/verification
 - Confidentiality & privacy
 - Server authenticity/verification

DNSSEC in a Nutshell

- Strong cryptographic hashes of DNS data
 - SHA-1, SHA-2
- Public-key crypto
 - RSA, DSA, ECDSA, Diffie-Hellman
- Digital signatures of hashes of DNS data
 - Signed with DNS zone's private key
- Signatures and public keys stored in the DNS as resource records

Validation

- Validating resolver computes hash value of the returned DNS data that it requested
 - Response also includes the signature for that data
- Validator retrieves the corresponding public key and applies that public key to the signature to get the hash value that had been signed
 - If that hash matches the one it calculated itself, all is well
 - If not, Something Bad has happened

DNSSEC Deployment - I

- Swedish ccTLD . se was first, September 2005
- Internet root got signed July 15th, 2010
 - A very, very cautious roll-out for obvious reasons
 - Awkward political problems too
 - No one organisation has the "master key"
- Most of the popular TLDs are now signed
 - .com, .net, .uk, .info, .org, .de, etc.
- All of ICANN's new gTLDs must use DNSSEC

DNSSEC Deployment - 2

- Very little adoption or interest
- Only 2 of the top 100 Alexa websites have signed domains
- Survey found uptake in .com was < 1% and ~30% of them had DNSSEC setups that failed to validate
- ~12% of DNS queries use a validating resolver
 - Most of them come via google's 8.8.8.8 and Comcast
- Some ccTLDs have got most delegations signed but almost none of the nation's ISPs validate

Catch 22

- Why incur the cost and hassle of signing if nobody is validating?
- Why incur the cost and hassle of validating if nobody is signing?
- Where are the use cases and killer apps?
 - Nobody's seriously developing these
 - Some proof of concept browser plugins
- Probably need all three groups to act in concert at the same time
 - Good luck with that...

Externalities

- Signers get no benefit from doing that, validators do
 - If the organisations doing validation screw up, signed zones fall off the net
- Anyone doing DNSSEC validation loses out if/when those who are signing make a mistake
 - ISP A loses when validation fails for *important.com* while there's no problem at ISP B which does not validate
- Why take the risk?
- DNSSEC adopters take on risks and costs for no real gains for themselves, just for others

DNSSEC in Enterprises

- No killer app yet
- No convincing use cases or business justification
 - Serious DNS spoofing attack might change minds
- Why add the complexity and risks for very little benefit?
- DNSSEC can interfere with on-the-fly DNS response rewriting systems
 - Blocking access to malware & smut, load balancers, geospecific redirection, high availability middleboxes, etc.

Key Rollover in Pictures

Key Rollover

- DNSSEC keys will need to be changed from time to time
 - Sensible cryptographic practice
- This should happen at regular, planned intervals
 - Might have to happen sooner in an emergency
- How is this best done?
- Principle is clear enough, doing it right isn't
 - Too many easily broken moving parts
 - A "one size fits all" approach is impossible

The DNSSEC Treadmill

- DNS admins need to re-sign their zones and keep doing that forever
 - They need to change keys regularly too
- Need to use latest DNS software:
 - Bug fixes, new crypto support, add/drop algorithms, etc.
- Lots of last mile issues
- Open-ended and hard to quantify costs for support, operations, troubleshooting and tooling
 - Few organisations know what DNS costs them anyway

DNSSEC: A Never Ending Task?

DPRIVE - DNS Privacy

- WG set up as a result of Snowden revelations
- Initially aimed at DNS traffic between stub resolvers and resolving servers
 - About to consider resolving server traffic with authoritative servers
- Conceptually simple: DNS over (D)TLS
 - (Datagram) Transport Layer Security
 - Encrypted traffic uses port 853 rather than port 53

DPRIVE & Enterprise Networks - I

- DNS traffic goes dark (sort of)
 - No visibility of what's in port 853 traffic
 - Can't intercept or eavesdrop on that
 - Obvious implications for DNS rewriting and blocking systems
- Not such a Big Deal for enterprise nets
 - Resolving DPRIVE server decrypts incoming queries (and logs them?) before making plaintext queries to authoritative servers

DPRIVE & Enterprise Networks - 2

- Enterprise IT management remains in control
- DNS over (D)TLS unlikely to be enabled by default
 - Conscious decision needed to switch this on
- Can check for port 853 traffic in the network
 - Tripwire(s) at firewalls and DMZ?
- Little client software so far
 - No killer app or use cases yet

DPRIVE Server-side Implementations

- Native support in two open-source resolving servers, unbound and knot
- No current plans to support this in BIND9
- Handful of experimental public servers mostly for testing - on volunteer, best efforts basis
- Quad9 started in Q4 2017
 - Global and free anycast resolver service from PCH
 - Similar to 8.8.8.8, but on address 9.9.9.9
 - Offers service on port 53 and 853 (DNS over (D)TLS)

DPRIVE Client-side Implementations

- Only one: stubby
 - DNS proxy which takes incoming queries on loopback interface and forwards them using (D)TLS to port 853 somewhere
 - Currently uses (D)TLS1.2 will work with (D)TLS1.3
 - Mostly aimed at experts
- Proof of concept app in Android development builds
 - Might move to production builds in Q3/4 2018
 - No decisions yet

DPRIVE Status

- Very little deployment and usage so far
- Quad9's only seen 5-10,000 unique IP addresses use DNS over (D)TLS
- stubby developers estimate a broadly similar number of downloads
- DPRIVE enthusiasts hope mobile apps will drive uptake
- Uncertain future because of other IETF work
 - DPRIVE may be overtaken by events
 - Could end up as the DNS equivalent of ToR

DNS over HTTP(S) - DOH

- WG formed last year: first meeting at IETF100
- Simple idea
 - Browsers send their DNS queries over HTTP(S) to a web server, web server does the resolution or gets a resolving DNS server to do that
 - Web server could "push" DNS data to browser to reduce latency and improve page load times
- Current thinking is this will be for HTTP/2
 - HTTP1.1 without TLS is possible, but should be discouraged

DOH Challenges & Issues

- HTTP has richer set of primitives than DNS
 - How well can these be aligned? Should they?
- Interactions between browser and DNS caches
- Server discovery: how does a DOH-capable browser find a DOH-capable web server?
- Use cases and best practices will need to get documented eventually
 - No deployment (or standardisation) of DOH yet

DoH & Enterprise Networks - I

- Much DNS traffic could go really dark
 - Most browser DNS traffic would be encrypted and use port 443 (HTTPS), not port 53 (DNS)
 - DoH activity will be "buried" inside HTTPS connections
 - Can't intercept or eavesdrop on that
 - Hard to find out who's looking up what and when
 - Web servers handle the DNS queries sent by browers
 - Obvious implications for DNS response rewriting and blocking systems

DOH & Enterprise Networks - 2

- Arbitrary web servers get DOH traffic instead of queries to locally-run resolving DNS servers
 - DNS logs and analytics less useful
 - Monitoring or intercepting port 53 traffic at the DMZ or firewall will be less effective
 - Web server's DNS policies apply, not the enterprise's
- Address-based rewriting of DNS responses would apply to web server, not the orginating browser
 - Local DNS access control policy effectively bypassed

DOH & Enterprise Networks - 3

- Enterprise IT management potentially loses control
 - No need to set up DPRIVE-style DNS servers
 - Users get DOH-capable browsers by stealth
 - Just upgrade to the latest version job done!
 - Disabling DOH in local web servers might not help much
 - Could make a difference when web proxies have to be used to reach the public Internet

DOH Status

- Work at the IETF has barely started
 - First consensus document towards Q4 2018?
- Strong support from key players
 - google, Mozilla Foundation, Apache(?)
 - Should mean very quick and uncontrolled adoption
 - Just install latest Firefox/Chrome/whatever
- Significant overlap with DPRIVE
 - A different way to encrypt DNS traffic from stub resolvers
 - Which approach will win?

QUIC

- New transport-layer protocol with (D)TLS baked in
 - Most significant IETF development in over a decade
- Initial hopes for everything-over-QUIC have faded
 - IETF was too optimistic/ambitious despite lots of goodwill and engineering effort from key players
 - Immediate priority is HTTP/2, revisit a generic solution for other protocols (DNS, SIP, etc) later
 - Not clear when that might work start
- Too early to tell what will happen next and when

ACME & DANE

- ACME working group is considering DANE as a way of authenticating phone numbers and SIP addresses
 - Very strong pressure from US authorities and telcos
- Could mean Secure DNS lookups to authenticate incoming call credentials which are provisioned in the DNS
 - Might be the use case to drive DNSSEC uptake
- Very much at the bleeding edge
 - Hard to suggest likely time-lines

Costs

- How long is a piece of string?
- (Incremental) hardware and software costs for DNSSEC, DOH, DRPIVE and QUIC are probably minimal
 - Bigger iron shouldn't be necessary
 - New functionality probably bundled in software "for free"
- Real costs lie elsewhere and are (a) enterprise specific; (b) probably hard to quantify:
 - Training, migration, testing, documentation, processes, changes to IT policies, legal/regulatory considerations, Rol, risk/threat analysis, impact on installed base

Summary

- Secure DNS (DNSSEC)
 - Still a solution in search of a problem
- DPRIVE DNS over (D)TLS
 - Probably going to flop or be a very niche service
 - Mobile space could change this and fast!
- DOH DNS over HTTP(S)
 - Will be very disruptive
 - Likely to get quick adoption significant vendor buy-in
- QUIC too early to tell for DNS

QUESTIONS?